听歌曲的排名则会下降如果是这样这些不同群......《噪声》摘录

管理类 日期 2022-09-20
听歌曲的排名则会下降,如果是这样,这些不同群体中的歌曲排名应该相同,或至少相似,即不同群体之间没有噪声。事实上,这也是萨尔加尼克及其同事试图去探讨的问题,他们考察的是一种特定的噪声源:社会影响。

该研究的核心发现是:不同群体中的歌曲排名差异巨大,也就是说,在不同群体之间存在大量噪声。在某个群体中,《最好的错误》可能非常成功,而《我是个错误》则非常失败;在另一个群体中,《我是个错误》极其成功,但《最好的错误》的表现则一塌糊涂。如果一首歌一开始就备受欢迎,它随后也一定会表现得更好,而如果它一开始没有获得这种优势,那么结果就难说了。

可以肯定的是,最差的歌曲(在控制组中表现最差)排名不可能靠前,最好的歌也不太可能垫底,而对于其他歌曲而言,任何事情都有可能发生。正如作者所强调的那样:“相比于独立判断,人们在有社会影响的条件下,更难预测哪些歌曲会成功。”简而言之,社会影响在不同群体之间产生了明显的噪声。如果你仔细思考,你就会知道,单个群体内部也会存在噪声,因为他们很容易就喜欢一首歌或不喜欢一首歌,这取决于这首歌一开始是否受欢迎。

正如萨尔加尼克及其同事随后所展示的,群体的结果很容易被操纵,因为流行程度会自我强化。在后续实验中,他们动了点小心思,对控制组中的歌曲排名进行了反转。换句话说,他们谎报了这些歌曲的受欢迎程度,人们看到的最好的音乐其实是最差的音乐,反之亦然。研究人员随后观察了访客们的反应,结果是,最不受欢迎的歌曲深受喜爱,而原来最受欢迎的歌曲则表现非常差。即使研究人员误导了人听歌曲的排名则会下降,如果是这样,这些不同群体中的歌曲排名应该相同,或至少相似,即不同群体之间没有噪声。事实上,这也是萨尔加尼克及其同事试图去探讨的问题,他们考察的是一种特定的噪声源:社会影响。

该研究的核心发现是:不同群体中的歌曲排名差异巨大,也就是说,在不同群体之间存在大量噪声。在某个群体中,《最好的错误》可能非常成功,而《我是个错误》则非常失败;在另一个群体中,《我是个错误》极其成功,但《最好的错误》的表现则一塌糊涂。如果一首歌一开始就备受欢迎,它随后也一定会表现得更好,而如果它一开始没有获得这种优势,那么结果就难说了。

可以肯定的是,最差的歌曲(在控制组中表现最差)排名不可能靠前,最好的歌也不太可能垫底,而对于其他歌曲而言,任何事情都有可能发生。正如作者所强调的那样:“相比于独立判断,人们在有社会影响的条件下,更难预测哪些歌曲会成功。”简而言之,社会影响在不同群体之间产生了明显的噪声。如果你仔细思考,你就会知道,单个群体内部也会存在噪声,因为他们很容易就喜欢一首歌或不喜欢一首歌,这取决于这首歌一开始是否受欢迎。

正如萨尔加尼克及其同事随后所展示的,群体的结果很容易被操纵,因为流行程度会自我强化。在后续实验中,他们动了点小心思,对控制组中的歌曲排名进行了反转。换句话说,他们谎报了这些歌曲的受欢迎程度,人们看到的最好的音乐其实是最差的音乐,反之亦然。研究人员随后观察了访客们的反应,结果是,最不受欢迎的歌曲深受喜爱,而原来最受欢迎的歌曲则表现非常差。即使研究人员误导了人们哪些歌曲是受欢迎的,但在人数非常大的群体中,受欢迎和不受欢迎程度受排名的影响是相同的。唯一的例外是,随着时间的推移,控制组中最好听的歌曲会逐渐变得更流行,这意味着反向排名也没有让它垫底。但是,对于绝大多数歌曲而言,反向排名决定了它们的最终排名。

我们很容易看出这项研究与一般性的群体判断的关系。假设有一个包含10名成员的小群体,他们要决定是否采用某项大胆的新举措。如果一两个支持者先发言,他们很容易使整个团队转向他们偏好的方向。如果最先发言的是持怀疑态度的人,情况也是如此,至少当人们能够互相影响时是如此。事实上,群体中的成员常常会互相影响,因此,仅仅是因为先发言的人不同,或者一开始下载某首歌的人更多,类似的群体会做出非常不同的判断。《最好的错误》和《我是个错误》的流行现象在各种专业判断中也存在。如果群体没有收到类似歌曲排名的信息,比如对某一大胆举措的热烈支持,该举措可能仅由于其支持者未发言而无法推进下去。

不仅仅是音乐下载,其他领域也一样

如果你是一个多疑的人,你可能会认为音乐下载只是一个特例,或者至少与其他的群体判断不同,然而,在其他领域也出现了类似的结果。我们来看一下在英国的公民投票(简称公投)中,人们对不同提案的支持情况。在公投中决定是否要投支持票时,人们自然要判断这是不是一个好的主意。这种模式类似于萨尔加尼克及其同事的研究:最初涌现的流行度会自我强化,如果某项提案在第一天没有受到关们哪些歌曲是受欢迎的,但在人数非常大的群体中,受欢迎和不受欢迎程度受排名的影响是相同的。唯一的例外是,随着时间的推移,控制组中最好听的歌曲会逐渐变得更流行,这意味着反向排名也没有让它垫底。但是,对于绝大多数歌曲而言,反向排名决定了它们的最终排名。

我们很容易看出这项研究与一般性的群体判断的关系。假设有一个包含10名成员的小群体,他们要决定是否采用某项大胆的新举措。如果一两个支持者先发言,他们很容易使整个团队转向他们偏好的方向。如果最先发言的是持怀疑态度的人,情况也是如此,至少当人们能够互相影响时是如此。事实上,群体中的成员常常会互相影响,因此,仅仅是因为先发言的人不同,或者一开始下载某首歌的人更多,类似的群体会做出非常不同的判断。《最好的错误》和《我是个错误》的流行现象在各种专业判断中也存在。如果群体没有收到类似歌曲排名的信息,比如对某一大胆举措的热烈支持,该举措可能仅由于其支持者未发言而无法推进下去。

不仅仅是音乐下载,其他领域也一样

如果你是一个多疑的人,你可能会认为音乐下载只是一个特例,或者至少与其他的群体判断不同,然而,在其他领域也出现了类似的结果。我们来看一下在英国的公民投票(简称公投)中,人们对不同提案的支持情况。在公投中决定是否要投支持票时,人们自然要判断这是不是一个好的主意。这种模式类似于萨尔加尼克及其同事的研究:最初涌现的流行度会自我强化,如果某项提案在第一天没有受到关注,那么它很快就会沉寂。在政治领域就像在音乐实验中一样,支持与反对在很大程度上依赖于社会影响,具体而言,依赖于人们是否能看到其他人投的是支持票还是反对票。

美国康奈尔大学社会学家迈克尔·梅西(Michael Macy)及其合作者在音乐下载实验的基础上构建了另外一个实验,目的是弄清楚:他人的观点是否会影响人们的判断,使得相应的政治观点受到民主党人的欢迎,而遭到共和党人的反对(或者相反)。答案简单明了:是的。在网络群体中,如果民主党人看到某一观点一开始就受到其他民主党人的支持,那么他们就会采纳这一观点,并最终导致大部分民主党人支持这一观点。但是,如果另一个网络群体中的民主党人看到,某一观点一开始就受到共和党人的支持,那么这些民主党人就会拒绝接受这一观点,并最终导致大部分民主党人都拒绝接受该观点。简而言之,政治观点同歌曲一样,最终的命运取决于最初的受欢迎程度。正如梅西等研究人员指出的那样:“少数先行者的随机差异”会对整个群体产生颠覆性的影响——让共和党人和民主党人都欣然接受一系列与彼此的立场毫不相关的观点。

我们还可以思考一个一般性的群体决策问题:人们在网上如何对各种评论做出判断。耶路撒冷希伯来大学教授列夫·穆奇尼克(Lev Muchik)及其同事在一个网站上开展了一项实验,他们向人们呈现不同的故事,并允许人们发表评论,以及对这些评论投赞成票或反对票。研究人员可以人为地、自动化地给一些评论投出第一张赞成票。你可能会想,在成百上千名访客中,使某条评论多出一张初始赞成票根本无足轻重,这个想法合情合理,却是错的。在看到第一张赞成票注,那么它很快就会沉寂。在政治领域就像在音乐实验中一样,支持与反对在很大程度上依赖于社会影响,具体而言,依赖于人们是否能看到其他人投的是支持票还是反对票。

美国康奈尔大学社会学家迈克尔·梅西(Michael Macy)及其合作者在音乐下载实验的基础上构建了另外一个实验,目的是弄清楚:他人的观点是否会影响人们的判断,使得相应的政治观点受到民主党人的欢迎,而遭到共和党人的反对(或者相反)。答案简单明了:是的。在网络群体中,如果民主党人看到某一观点一开始就受到其他民主党人的支持,那么他们就会采纳这一观点,并最终导致大部分民主党人支持这一观点。但是,如果另一个网络群体中的民主党人看到,某一观点一开始就受到共和党人的支持,那么这些民主党人就会拒绝接受这一观点,并最终导致大部分民主党人都拒绝接受该观点。简而言之,政治观点同歌曲一样,最终的命运取决于最初的受欢迎程度。正如梅西等研究人员指出的那样:“少数先行者的随机差异”会对整个群体产生颠覆性的影响——让共和党人和民主党人都欣然接受一系列与彼此的立场毫不相关的观点。

我们还可以思考一个一般性的群体决策问题:人们在网上如何对各种评论做出判断。耶路撒冷希伯来大学教授列夫·穆奇尼克(Lev Muchik)及其同事在一个网站上开展了一项实验,他们向人们呈现不同的故事,并允许人们发表评论,以及对这些评论投赞成票或反对票。研究人员可以人为地、自动化地给一些评论投出第一张赞成票。你可能会想,在成百上千名访客中,使某条评论多出一张初始赞成票根本无足轻重,这个想法合情合理,却是错的。在看到第一张赞成票之后(别忘了这完全是人为操作的),下一个访客对该评论投赞成票的可能性增加了32%。

令人惊讶的是,这一效应随着时间的推移一直在持续。5个月后,开始时人为投出的那张赞成票,使得该评论的平均赞成票得票率增加了25%。最初的一张赞成票竟然产生了如此大的影响,这表明噪声确实存在。不管最初那一票是为何而投,它都使整体的受欢迎程度发生了巨大的改变。

这项研究为群体态度的转变以及群体内为何存在噪声提供了一条线索:相似的群体会做出非常不同的判断,而同一群体做出的判断也仅仅是一系列可能性中的一种。群体成员表达的赞成、中立、反对意见,其作用也类似于一开始投赞成票或反对票。如果群体中的一个成员立即表示赞同,那么其他成员也就有理由这么做。毫无疑问,当群体赞同某些产品、人、活动或思想时,可能并不是因为它们的内在优点,而是因为“提前投票”发挥了作用。当然,穆奇尼克的研究针对的是大规模群体,但同样的结果也会出现在小规模群体中,甚至更加富有戏剧性,因为最开始投下的赞同某个计划、产品或判决的赞成票经常会对他人产生更大的影响。

这里有一个相关的观点。我们曾经指出群体智慧效应指的是,如果你召集一大群人,问他们一个问题,他们的答案的平均值更有可能接近真实答案。对判断进行汇总是一种减少噪声,进而减少误差的非常好的方法,但是如果人们互相交流,那情况又会如何呢?你可能认为这样做是有好处的。毕竟人们可以互相学习,从而找出正确答案。在一些非常有利的条件下,互相分享知识、深思熟虑的群体确实会做之后(别忘了这完全是人为操作的),下一个访客对该评论投赞成票的可能性增加了32%。

令人惊讶的是,这一效应随着时间的推移一直在持续。5个月后,开始时人为投出的那张赞成票,使得该评论的平均赞成票得票率增加了25%。最初的一张赞成票竟然产生了如此大的影响,这表明噪声确实存在。不管最初那一票是为何而投,它都使整体的受欢迎程度发生了巨大的改变。

这项研究为群体态度的转变以及群体内为何存在噪声提供了一条线索:相似的群体会做出非常不同的判断,而同一群体做出的判断也仅仅是一系列可能性中的一种。群体成员表达的赞成、中立、反对意见,其作用也类似于一开始投赞成票或反对票。如果群体中的一个成员立即表示赞同,那么其他成员也就有理由这么做。毫无疑问,当群体赞同某些产品、人、活动或思想时,可能并不是因为它们的内在优点,而是因为“提前投票”发挥了作用。当然,穆奇尼克的研究针对的是大规模群体,但同样的结果也会出现在小规模群体中,甚至更加富有戏剧性,因为最开始投下的赞同某个计划、产品或判决的赞成票经常会对他人产生更大的影响。

这里有一个相关的观点。我们曾经指出群体智慧效应指的是,如果你召集一大群人,问他们一个问题,他们的答案的平均值更有可能接近真实答案。对判断进行汇总是一种减少噪声,进而减少误差的非常好的方法,但是如果人们互相交流,那情况又会如何呢?你可能认为这样做是有好处的。毕竟人们可以互相学习,从而找出正确答案。在一些非常有利的条件下,互相分享知识、深思熟虑的群体确实会做得很好。然而,独立做出判断是发挥群体智慧的前提条件,如果人们不是自己做出判断,而是依赖于其他人,那么群体并不会更明智。

有些研究已经表明了这一点。在简单的评估任务——评估城市里的犯罪数量、一段时期内增长的人口、不同国家国界线的长度等任务中,只要群体成员独自做出判断,群体会更明智;如果他们知道了其他人的评估,比如一个12人小组的平均估计值,那么群体比个体的表现还要糟糕。正如研究者指出的那样,社会影响是有问题的,因为它们降低了群体多样性,但并没有减少群体的误差。具有讽刺意味的是,即便一点点社会影响都会降低群体智慧,但对多个独立判断进行适当的汇总则可以产生令人难以置信的准确结果。

信息级联,极易放大群体判断的噪声

我们描述的一些研究中包括“信息级联”(iformatio cascades)。信息级联很常见,它可以解释为什么一些相似的商业群体、政治群体以及其他群体会做出完全不同的决策,以及为什么一些小的变化会产生如此不同的结果乃至噪声。只有历史真实发生了,我们才能看到,而对于许多群体以及群体决策而言,存在着各种各样的可能性,而最终得以实现的只是其中的一种。

要想理解信息级联是如何发挥作用的,我们可以想象在一间大办公室中有10个人,他们在决定要雇用谁来担任一个重要职位。候选人有3位,分别是托马斯、山姆和朱莉。假设群体成员是按顺序发表自己的观点的,每一个人都会认真聆听其他人的判断。阿瑟第一个发得很好。然而,独立做出判断是发挥群体智慧的前提条件,如果人们不是自己做出判断,而是依赖于其他人,那么群体并不会更明智。

有些研究已经表明了这一点。在简单的评估任务——评估城市里的犯罪数量、一段时期内增长的人口、不同国家国界线的长度等任务中,只要群体成员独自做出判断,群体会更明智;如果他们知道了其他人的评估,比如一个12人小组的平均估计值,那么群体比个体的表现还要糟糕。正如研究者指出的那样,社会影响是有问题的,因为它们降低了群体多样性,但并没有减少群体的误差。具有讽刺意味的是,即便一点点社会影响都会降低群体智慧,但对多个独立判断进行适当的汇总则可以产生令人难以置信的准确结果。

信息级联,极易放大群体判断的噪声

我们描述的一些研究中包括“信息级联”(iformatio cascades)。信息级联很常见,它可以解释为什么一些相似的商业群体、政治群体以及其他群体会做出完全不同的决策,以及为什么一些小的变化会产生如此不同的结果乃至噪声。只有历史真实发生了,我们才能看到,而对于许多群体以及群体决策而言,存在着各种各样的可能性,而最终得以实现的只是其中的一种。

要想理解信息级联是如何发挥作用的,我们可以想象在一间大办公室中有10个人,他们在决定要雇用谁来担任一个重要职位。候选人有3位,分别是托马斯、山姆和朱莉。假设群体成员是按顺序发表自己的观点的,每一个人都会认真聆听其他人的判断。阿瑟第一个发

声明:部分内容来自互联网,如侵权请联系删除!
友情:思诺速记

相关推荐

管理类 / 日期:2024-03-11
理解那个东西,但是我已经发现,他的信息距离和我越来越近了。因为他不再看《舟山晚报》,我也不再看《新民晚报》了,我们看的都是腾讯新闻App,看新闻头条,他也看我的朋友圈。所以信息高速一旦被打通了,一、二线和三、四线城市之间的认知壁垒也逐渐被打破了。要掌握70%~80%的都市消费,其实就是掌握两亿中产阶层。像分众这样的公司,之所以能够覆盖78%有家庭汽车的、80
管理类 / 日期:2024-03-11
实现资产最大限度的增值。一些合伙人可以通过“股权转让”等资产重组方式退出。二、退出如何结算当合伙人退出公司后,其所持的股权应该按照一定的形式退出。一方面对于继续在公司里做事的其他合伙人更公平;另一方面也便于公司的持续稳定发展。而合伙人退出之后,如何结算也是一个问题。一般采用三种方法:估值法、参考相关法律、另外约定。估值法,即当合伙人中途退出,退出时公司可以按
管理类 / 日期:2022-09-20
海因里希金字塔海因里希金字塔了解自己的类型=偏差检查了解自己的类型=偏差检查25 主观的陷阱:不要依自己的好恶和期望来行动做判断时,会希望可以得到“客观”的保证。主观介入判断,是造成犯下严重错误的原因。首先,必须留意如何解读讯息。一旦主观介入后,即使是相同讯息,也会不小心做出截然不同的解读。假设其他部门的同事告诉你:“最近你们部门的某某人和竞争公司有所接触。
管理类 / 日期:2022-09-20
么样的作用呢?其实,当企业拥有完备的员工福利时,可以帮助企业提升人才竞争优势,这对于知识型企业而言,对优质人才的吸引能有效增加企业的核心能力。而且企业的福利管理越人性化,越能增加员工的凝聚力,非常有利于实现企业人力资源管理目标。基于此,企业在福利管理方面,要做好福利制度的建设,在完备的福利制度下,企业更容易实现人力资源管理的目标及企业战略目标,同时还可以鼓励

推荐列表

热门标签